

 Navigation

 	
 index

 	
 next |

 	Wallace

Wallace.jl - Efficient evolutionary computation in Julia

	Overview
	Philosophy

	Installation

	Using Wallace

	Example

	Citation

	Basics
	Algorithm

	Population

	Species

	Individual

	Fitness

	Breeding

	Replacement

	Features
	Koza Tree Genetic Programming

	Strongly Typed Genetic Programming

	Push GP

	Cartesian Genetic Programming

	Reference
	Algorithm

	Representation

	Fitness

	Crossover

	Mutation

	Replacement

	Tutorials
	Getting Started

	Simple Genetic Algorithms and Max Ones

	Floating Point Vectors and Numerical Optimisation

	Permutations and the Travelling Salesman Problem

	Koza Tree Genetic Programming and Symbolic Regression

 Copyright 2015, Christopher Steven Timperley.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wallace

Overview

This chapter provides a high-level overview of Wallace.jl, installation
instructions, information on the different ways to interact with Wallace,
and an example algorithm for solving the Max Ones problem.

Philosophy

Installation

The latest stable version of Wallace can be installed via a simple one line
command from within the Julia REPL, given below:

Pkg.add("Wallace")

Alternatively, if you wish to install the bleeding-edge version of Wallace
from the master GitHub branch, you may do so by executing the following
from within the REPL instead:

Pkg.clone("https://github.com/ChrisTimperley/Wallace.jl")

If Wallace is already installed on your system, but you believe it to be out
of date, you may execute the following command via the REPL:

Pkg.update("Wallace")

For information on installing the latest version of Julia, visit the Downloads
page of the Julia website, at: http://julialang.org/downloads/

Using Wallace

There are a number of different ways in which you may wish to interact with
Wallace, several of which are described below:

Julia REPL (Read-Eval-Print-Loop)

The simplest way to started with Wallace is through Julia’s built-in
REPL, which can be accessed by simply typing julia into the terminal
(once Julia has been installed). Once the REPL has been loaded, one may
use the using Wallace statement to import the Wallace environment
into the workspace, allowing them to interact with Wallace.

shell> julia
...
...

julia> using Wallace

Once inside the REPL, you may make use of Julia’s help function, invoked by
typing ? into the prompt, followed by the name of a particular
representation, operator, algorithm, or other entity within Wallace (or Julia)
that you wish to learn more about. An example use of the help function is shown
below:

julia> using Wallace
help?> mutation.bit_flip
 Performs bit-flip mutation on a fixed or variable length chromosome of binary digits, by flipping 1s to 0s and 0s to 1s at each point
 within the chromosome with a given probability, equal to the mutation rate.

 Parameters:

 • stage::AbstractString, the name of the developmental stage that this operator should be applied to.
 Defaults to the genotype if no stage is specified.
 • rate::Float, the probability of a bit flip at any given index. Defaults to 0.01 if no rate is provided.

Script Execution

Alternatively you can treat your Wallace algorithms as you would any other
Julia code, and write a standard Julia script to execute them. In order to
access the functionality provided by Wallace, you must import the Wallace
package.

shell> julia my_script.jl

IJulia Graphical Notebook

Another way to interact with Wallace is through IJulia, a powerful graphical
web-based notebook front-end for Julia. More details about IJulia, including
how it should be installed, can be found at: https://github.com/JuliaLang/IJulia.jl.

Once IJulia has been installed, you may start a new notebook, using Wallace,
by following the commands below:

julia> using IJulia
julia> notebook()

ijulia> using Wallace

Example

Below is the source code for the Max Ones benchmark problem provided in the
examples package. First an algorithm definition is specified, using
algorithm.genetic, then it is composed into an optimised algorithm
instance, before finally the algorithm instance is run using run!.

Provide a definition for the algorithm.
def = algorithm.genetic() do alg
 alg.population = population.simple() do pop
 pop.size = 100

 # Species describes the fitness scheme and representation used by
 # individuals belonging to that species.
 pop.species = species.simple() do sp
 sp.fitness = fitness.scalar(Int)
 sp.representation = representation.bit_vector(100)
 end

 # Multi-threading breeding.
 pop.breeder = breeder.flat() do br
 br.threads = 8
 br.selection = selection.tournament(2)
 br.mutation = mutation.bit_flip(1.0)
 br.crossover = crossover.one_point(0.1)
 end
 end

 # Evaluation function (split across 8 threads).
 alg.evaluator = evaluator.simple(Dict{ASCIIString, Any}("threads" => 8)) do scheme, genome
 assign(scheme, sum(genome))
 end

 # Termination conditions.
 alg.termination["generations"] = criterion.generations(1000)
end

Compose the algorithm from its definition.
alg = compose!(def)

Run the composed algorithm.
run!(alg)

Citation

If you plan on using Wallace for your research, we encourage you to cite the
paper below. Additionally, put in a merge request, and we will add your paper
to the list of papers using Wallace.

@inproceedings{timperley2015wallace,
 author = {Timperley, Christopher Steven and Stepney, Susan},
 title = {Wallace: An efficient generic evolutionary framework},
 booktitle={ECAL 15},
 pages={365--372},
 year={2015},
 organization={MIT Press}
}

 Copyright 2015, Christopher Steven Timperley.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wallace

Basics

In this section, we cover the basic concepts employed within Wallace, focusing
on those relating to evolutionary algorithms, and less on any other concepts
concerned with other meta-heuristics supported within the framework.

For now, this section assumes that the reader has at least a basic knowledge
of the structure and concepts of evolutionary algorithms.

Algorithm

The domain-specific language within Wallace is entirely tailored around the
specification and subsequent fine-tuning of algorithms for particular problem
instances. Users provide a specification of their problem to a particular
algorithm constructor, chosen according to the search algorithm they wish to
use to solve the problem, which is then composed into a heavily optimised
Algorithm instance via the compose! method, before being ready for
executed using the run! method.

Wallace supports a number of different meta-heuristic algorithms, ranging from
random walks and hill climbing, to ant colony optimisation and evolutionary
algorithms. For the remainder of this section however, we shall focus our
discussion on the implementation of evolutionary algorithms within Wallace.
More details about the other types of algorithms supported within Wallace
may be found in the reference section of the documentation.

Evolutionary Algorithms

Brief recap.

Population

Abstractly, the population of the algorithm is used to hold the individuals
which are presently alive within the current generation, as well as the
offspring born within that generation. Each individual within the population is
used to represent a candidate solution to the problem being solved.

Like many other evolutionary computation frameworks, Wallace models the
population of an algorithm as a set of demes, or sub-populations, each
containing a (nearly) isolated collection of individuals. Within each
deme, all individuals belong to the same species, but within the population,
each deme may elect to use a different species.

[image: ../_images/population.png]

Simple Populations

For simple problems, one can use the population.simple model to quickly specify
a single deme population, which effectively hides the inner details of the deme
model from the user.

Complex Populations

The full power of the deme model can be utilised with the
population.complex model, which allows the user to add an arbitary number
of heterogeneous demes to the population. This ability can be exploited to
spread the search across multiple physical machines, or to allow the search to
test different problem representation and search parameters at the same time.

Island Model

Where the complex population model is employed, one may also choose to make use
of an island model population.

In island model populations, each deme is conceptualised as a island within
some imaginary archipelago, where all the individuals in that deme are confined
to that island.

	After a certain number of generations, known as the migration interval,
a pre-determined number, or fraction of individuals from each island may migrate
from their island to a neighbouring island.

	The islands that an individual may migrate to from their current island is
determined by the migration topology, which describes the connections
between islands. By default, a fully connected topology is used, where every
island can be reached by any other.

	The individuals selected to leave an island, and those chosen to be removed
from an island to make room for them, are both decided according to a
pre-determined migration policy.

An example of a simple island model population for the one max problem is shown
below:

EXAMPLE CODE

Species

The species of an individual describes the fitness scheme it uses to transform
the raw objective function values produced by the evaluator into fitness values,
as well as each the high-level details of its chromosomes, such as their type
and any restrictions upon them.

Complex Species

Unlike most other evolutionary computation frameworks, Wallace implements a
multiple representation individual model, where each individual may be represented
in a number of different ways (in fact, to our knowledge, no other framework
implements a similar model). This feature allows stages of development to be
codified, where one chromosome is used to produce another, which is then used
to produce another, and so on, until a phenome is produced.

This ability comes in use when performing grammatical evolution, where an
individual is subject to a process of development:

	Each individual begins life as a variable length bit string.

	From this bit-string, a series of codons, or non-terminal choices, are
produced, by transforming each successive block of n bits into an
integer.

	This series of codons is then used in conjuction with a provided grammar to
produce a derivation, modelled as a string.

	Finally, if we are using grammatical evolution to evolve programs, this
string is compiled to a program in the target language.

In Wallace, each of these stages can be explicitly modelled as its own
developmental stage, as shown in the example below:

species.complex() do sp
 sp.fitness = fitness.scalar()
 sp.stages = [
 species.stage("bit_string", representation.bit_string()),
 species.stage("codons", "bit_string", True, representation.int_list()),
 (species.stage("derivation", "codons") do stage
 stage.representation = representation.grammar_derivation() do g
 g.grammar = ...
 end
 end),
 species.stage("executable", "derivation", executable.cpp())
]
end

Conversion

Conversion between stages is automatically handled by Wallace,
according to transformation functions provided by the source and destination
representations.

Most conversions operate by handling each chromosome in sequence, however some
representations may make use of Wallace’s ability to perform mass conversion,
where all chromosomes are handled within a single method call.
This functionality can be useful when each conversion involves a certain degree
of overhead that can otherwise be minimised by bundling it with others. This
ability is used to compile Java and C programs concurrently,
significantly reducing the not inconsiderable cost of conversion.

Mutation and Crossover

This multiple representation model of individuals also allows mutation and
crossover to target different stages of development, rather than being
restricted to act only the genotype. More details on the breeding of complex
individuals is given in the Breeding section below.

Simple Species

As well as its complex species model, Wallace also offers a simpler species
model, species.simple, which hides the details of the multiple
representation model from the user, using its provided representation as the
sole developmental stage of the individual. For most problems, this model will
suffice.

An example of a simple species is given below:

species.simple() do sp
 sp.fitness = fitness.scalar()
 sp.representation = representation.int_vector(100)
end

Individual

Having discussed Wallace’s multiple representation model in the previous section,
we now turn our attention to the slightly different individual model used in
Wallace. Almost all other EC frameworks implement some parametric or base
Individual class to model its individuals, representing fitness and genome
as properties of the class, as shown below.

[image: ../_images/individual_traditional.png]
Instead, Wallace models individuals implicitly, using IndividualCollection objects,
containing separate arrays to hold fitnesses and different developmental stages of
all individuals within that collection, as shown below. All arrays are kept in sync, such that
the n-th entry in the fitness array belongs to the n-th entry in each of
the developmental stage arrays.

[image: ../_images/individual_new.png]
By implementing the individual model in such a way, we see a slightly enhanced
performance, most likely due to a reduced number of cache misses, as developmental
stages tend to be accessed at the same time as one another (during mutation and
crossover). More importantly, this change allows us to implement the multiple
representation model in a simple, easy-to-use manner, without affecting
extensibility or performance.

Fitness

The calculation of fitness values within Wallace also differs slightly from a
number of other popular EC frameworks. Rather than having the evaluator return
a fitness value (whether it be a fitness object or a floating point value), the
evaluator makes use of a provided FitnessScheme to compute the fitness values
for individuals from an arbitary number of objective function values via the
assign function, as shown below:

assign(scheme, score)

This assign function returns a fitness value, based on the provided objective
function values, whose type is dependent on the fitness scheme being used (where
smaller, more efficient types are preferred over redundant objects). Once all
individuals have had an initial (possibly partial) fitness value assigned, the
complete set of fitness values (for both the offspring and existing members) is
passed to the scale! method, which transforms any partial fitness values into
full fitness values, relative to the contents of the deme.

Through its fitness schemes, Wallace provides support for a wide variety of
multiple objective techniques, as well as co-evolution, fitness sharing, niching,
crowding, and more. For more details on these techniques, please refer to the
Reference section of the documentation.

Breeding

Breeding within Wallace is performed through a sub-type of the aptly named
breeder component. The exact processes involved depend on which type of
breeder is employed, however, all involve a process of selection, aided by
one or more selection operators, followed by a number of crossover
and mutation operators. Variation operators, i.e. crossover and
mutation, may operate on different developmental stages to one another;
Wallace takes care of ensuring everything is synchronised in the most
efficient way possible (with the help of meta-programming and analysis).

For a detailed list of the different breeding systems within Wallace, please
refer to the reference section of the documentation.

Replacement

Following the process of breeding, evaluation, and possibly migration, each
deme is subject to a process of replacement, or survivor selection, wherein the
members of the next generation are decided from the current members of the deme
and their offspring. By default the replacement scheme is set to use generational
replacement, replacement.generational, where the entirety of the existing
deme contents are replaced by the complete set of offspring, as in the simple
genetic algorithm.

 Copyright 2015, Christopher Steven Timperley.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wallace

Features

Koza Tree Genetic Programming

Strongly Typed Genetic Programming

Push GP

Cartesian Genetic Programming

 Copyright 2015, Christopher Steven Timperley.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wallace

Reference

Algorithm

Genetic Algorithm

Simple Genetic Algorithm

Evolution Strategy

Simulated Annealing

Hill Climbing

Random Walk

Representation

Int Vector (representation.int_vector)

Float Vector (representation.float_vector)

Bit Vector (representation.bit_vector)

Koza Tree (koza.tree)

Fitness

Scalar (fitness.scalar)

Aggregate (fitness.aggregate)

Lexicographic (fitness.lexicographic)

Belegundu (fitness.belegundu)

Goldberg (fitness.goldberg)

MOGA (fitness.moga)

Shared (fitness.shared)

Crossover

One Point Crossover (crossover.one_point)

Subtree Crossover (koza.subtree_crossover)

Mutation

Bit-Flip Mutation (mutation.bit_flip)

Performs bit-flip mutation on a fixed or variable length chromosome of binary
digits, by flipping 1s to 0s and 0s to 1s at each point within the chromosome
with a given probability, equal to the mutation rate.

Parameters:

	stage::AbstractString, the name of the developmental stage that this
operator should be applied to.
Defaults to the genotype if no stage is specified.

	rate::Float, the probability of a bit flip at any given index.
Defaults to 0.01 if no rate is provided.

Replacement

 Copyright 2015, Christopher Steven Timperley.

 Navigation

 	
 index

 	
 previous |

 	Wallace

Tutorials

In this section of the tutorial, we provide a number of fairly basic tutorials,
covering the usage of various algorithms, operators, and representations within
Wallace. All of the tutorials assume that the reader has a basic knowledge of
evolutionary algorithms, and that they have read the Basics section of this
documentation.

Getting Started

	Installing IJulia.

	Installing Pandas and matplotlib.

Simple Genetic Algorithms and Max Ones

In this tutorial, we will be using Wallace to implement a simple Genetic
Algorithm to solve the benchmark Max Ones optimisation problem, in which the
object is to maximise the number of ones in a fixed-length binary string.
This problem is trivial for humans, of course, but proves to be a little
trickier for “blind” evolutionary algorithms.

Getting started

Once you have Wallace installed on your machine, create a new Julia file for
this tutorial, named tut1.jl, or whatever you wish. At the top of this
file, don’t forget to make Wallace available via using Wallace.

For the rest of this tutorial, and all the other tutorials, you will now be
writing to this (or another) Julia script file, which can be executed from
the command line by simply calling:

$ julia tut1.jl

You may find it useful to keep the Julia REPL in another tab, in order to
allow you to quickly navigate the Wallace documentation via Julia’s help
command. Once in the Julia REPL, if you type ? into the command prompt,
the REPL will be switched into help mode. When in this mode, you may enter
the name of a particular component, method, type, or Julia function for which
you wish to view the documentation.

help> mutation.bit_flip

 Performs bit-flip mutation on a fixed or variable length chromosome of binary
 digits, by flipping 1s to 0s and 0s to 1s at each point within the chromosome
 with a given probability, equal to the mutation rate.

 Parameters:

 * `stage::AbstractString`, the name of the developmental stage that this
 operator should be applied to. Defaults to the genotype if no stage is
 specified.
 * `rate::Float`, the probability of a bit flip at any given index.
 Defaults to 0.01 if no rate is provided.

Tip: Don’t forget, in order to view the documentation for Wallace, you must
first make Wallace available to Julia by calling ``using Wallace``.

Creating a skeleton for our algorithm specification

All algorithm instances within Wallace are first outlined by providing details
of the exact configuration to the appropriate algorithm constructor. In this
case, as we wish to a Simple GA to solve the problem, we make use of the
algorithm.simple_genetic constructor.

Unlike the constructor for algorithm.SimpleGenetic, the underlying type
used to implement the simple GA, algorithm.simple_genetic is used to
produce a specification of an algorithm, which is then synthesised into an
executable instance using the compose! method.

Below is a skeleton for a simple GA definition. The block following the
closing parentheses is used to implement the domain-specific language of
Wallace, allowing a provided algorithm specification, alg, to be
manipulated and completed.

alg = algorithm.simple_genetic() do alg

end

Once we’ve finished filling out the skeleton above, which we will proceed
to do over the next few parts of this tutorial, we can compose the algorithm
and run it via the following code:

executable = compose!(alg)
run!(executable)

Performance tip: Wrap inside function; don’t use globals.

Specifying the components of our algorithm

Now we have our skeleton in place, let’s proceed to specify each of the
components of our algorithm. Before we can do this, however, we need to
know what the components of our particular algorithm are. In order to
find out this information, we can make use of the help function within
the Julia REPL (or Juno) to view the information about our algorithm:

julia> using Wallace
help> algorithm.simple_genetic

 DESCRIPTION OF THE SIMPLE GENETIC ALGORITHM

 Properties:

 * evaluator, the evaluator used to compute objective function values for
 the candidate solutions.
 * replacement, the replacement scheme used to determine the membership of a
 deme at each generation, from its existing members and their offspring.
 Defaults to ``replacement.generational`` if none is specified.
 * termination, a dictionary of termination conditions for this algorithm,
 specified as ``criterion`` instances, indexed by their names.
 * population, a specification of the population used by this algorithm,
 detailing its size, demes, species, etc.
 * loggers, a list of loggers that should be attached to this algorithm to log
 various data. Provided as ``logger`` specifications.

Armed with this information, we can now delve deeper into the domain specific
language, querying the help function about the types used by each of the
properties of our algorithm, such as population, replacement, logger,
and so on.

Setting up the population

To begin with, let’s specify the population used by our algorithm. For this
problem, a simple population, with a single deme and species, specified using
population.simple, will suffice. Using the help function, we can find the
necessary properties to set up our population.

After specifying the size of our population, the skeleton for our population
specification should look similar to the one given below (where the ellipsis
will be replaced by species and breeder specifications later on).

alg.population = population.simple() do pop
 pop.size = 100
 pop.species = ...
 pop.breeder = ...
end

Specifying the species

In order to complete our population specification, let us next move onto
specifying the species to which all of its members belong. Again, for the
purposes of this problem, where the search only requires one form of
representation, namely the bit-string, the simple species model,
species.simple, will suffice.

After performing a help query to learn the properties of species.simple,
we will learn that there are only two properties that need to be provided;
fitness, specifying the fitness scheme used to transform objective function
values returned by the evaluator into fitness values, and representation,
used to describe the representation used to model candidate solutions to the
problem.

pop.species = species.simple() do sp
 sp.fitness = ...
 sp.representation = ...
end

Designating a fitness scheme

First, let us outline the fitness scheme that will be used. You may notice from
the documentation for species.simple, that if no fitness scheme is supplied,
the species will default to using a scalar fitness scheme, fitness.scalar,
where the fitness function returns floating points that are to be maximised.

For our problem, however, we really want fitness values to be represented by
integers, rather than performing an unnecessary conversion to a floating point
number. A scalar fitness shall still suffice though, so we can provide our
species with the following fitness scheme definition:

sp.fitness = fitness.scalar() do f
 f.of = Int
 f.maximise = True
end

Alternatively, as shown in the documentation, we may also elect to specify our
fitness.scalar in a number of different ways. We can achieve the same
effect in fewer lines of code using the code below, but in the process we
possibly trade-off a smaller amount of readability for those less acquainted
with Wallace.

sp.fitness = fitness.scalar(Int)

Detailing the problem representation

With a fitness scheme now in place, we need only provide a specification of the
representation used by candidate solutions within the population. For our
particular problem we want to use the bit vector representation, implemented
by representation.bit_vector, where solutions take the form of a
fixed-length vector of boolean values (representing bits).

Reading the documentation for the representation.bit_vector, we learn that
this representation has only a single parameter, namely its length, given
by the length property.

For this tutorial, let us create a bit vector of length 100, to begin with. We
may do so using either of the definitions given below.

sp.representation = representation.bit_vector() do rep
 rep.length = 100
end

sp.representation = representation.bit_vector(100)

Specifying the breeding operations

Now we have a complete species specification, the only thing remaining in our
population specification is to provide a description of the breeding process
it uses.

Again, we will make use of Wallace’s simplest breeder, breeder.simple,
which implements breeding as a process of selection, followed by crossover,
and finishing with mutation, with each stage performed by a single operator.
Reading the documentation for breeder.simple, we end up with the following
skeleton specification:

pop.breeder = breeder.simple() do br
 br.selection = ...
 br.crossover = ...
 br.mutation = ...
end

Selection

For the purposes of this tutorial, we will use the simple, but rather effective
method of tournament selection as our method of choice, implemented by
selection.tournament. After reading the documentation, we can quickly
specify a tournament selection via the following:

br.selection = selection.tournament(2)

Where 2 is the size of the tournament.

Crossover

As our crossover method, we will use a simple one-point crossover, which accepts
two parent genomes are supplied to the operator, following which a random point
common to the two genomes is selected, each genome is split into two parts
about this point, and finally two new genomes are formed by combining the first
and second parts of opposite parents. This method of crossover is implemented
by the crossover.one_point operator.

As the only parameter for one point crossover is the crossover rate, which
determines the probability that a given pair of chromosomes will be subject to
the crossover process, rather than being left alone, we can specify our
operator using the following syntax:

br.crossover = crossover.one_point(0.5)

Where 0.5 is the crossover rate.

Mutation

Given our use of the bit vector representation, we make use of the most
naturally fitting mutation operator, bit flip mutation, implemented by
mutation.bit_flip. Bit-flip mutation works by iterating across a provided
chromosome and applying a bit-flip at each gene according to some probability,
given by the mutation rate.

As with one point crossover, bit flip mutation only accepts a single parameter,
the mutation rate. As such, we can concisely specify this operator via the
following:

br.mutation = mutation.bit_flip(0.05)

Where 0.05 is the per-gene mutation rate, or the probability that the value of
a given gene will be flipped.

Adding an evaluator

Next, we will provide our algorithm with an evaluator, responsible for
computing the objective function values for provided candidate solutions. For
this problem, the simple evaluator, evaluator.simple will suffice. Unlike
other components within Wallace, where the block following the method call is
used to specify its properties, for the simple evaluator, this block is used
to implement the objective function.

The supplied objective function should accept two arguments, the fitness
scheme, and the chromosome for the candidate solution, respectively. Once
an objective function for the candidate has been computed, a partial fitness
value for the individual should be computed from that value and returned. In
order to compute the fitness value, we pass the objective value to the
assign method, preceded by the fitness scheme.

Since the objective is measured by the number of 1s in a provided bit vector,
we can quickly compute the objective value using Julia’s sum function.

Putting together all of the above, we should end up with an evaluator that
looks something like the one below.

alg.evaluator = evaluator.simple() do scheme, genome
 assign(scheme, sum(genome))
end

If you query the documentation for the simple evaluator, you may notice it
also has two optional keyword parameters. threads is used to specify the
number of threads that the evaluation should be split across; leave this
for now. The stage parameter is used to specify the name of which of an
individual’s developmental stages should be supplied to the evaluator to
perform the evaluation; where no value is given, this parameter defaults to
using the genotype.

Adding the termination conditions

We now have a near complete algorithm specification. The only task remaining is
to provide a set of termination conditions, else our algorithm won’t terminate
unless the program is forcibly closed by the user.

In order to add a termination condition to our algorithm, we add an named entry
into its termination dictionary. We implement each of our mutually
inclusive termination conditions using instances of the criterion type. In
order to find a list of available criteria, perform a look-up using Julia’s
help function on the criterion type.

For this problem, we will simply add a generation limit, which will terminate
the algorithm once a given number of generations have passed (where the
initialisation phase is not counted as a generation). We can do this using
the criterion.generations criterion, as shown below:

alg.termination["generations"] = criterion.generations(1000)

Where 1000 refers to the generation limit.

Running the algorithm and analysing the results

Having followed the steps above, you should now have a complete algorithm
specification that we can use to solve our problem. Your code should look
something similar to that given below:

using Wallace

def = algorithm.genetic() do alg
 alg.population = population.simple() do pop
 pop.size = 100

 pop.species = species.simple() do sp
 sp.fitness = fitness.scalar(Int)
 sp.representation = representation.bit_vector(100)
 end

 pop.breeder = breeder.simple() do br
 br.selection = selection.tournament(2)
 br.mutation = mutation.bit_flip(0.05)
 br.crossover = crossover.one_point(0.5)
 end
 end

 alg.evaluator = evaluator.simple() do scheme, genome
 assign(scheme, sum(genome))
 end

 alg.termination["generations"] = criterion.generations(1000)
end

executable = compose!(alg)
run!(executable)

Give the code a run a few times, using run!, and see what kind of results
you can attain using the parameters settings we provided above. You might be
disappointed by the end-result of the algorithm, but don’t worry, we’ve given
you sub-optimal parameters on purpose.

Can you figure out a better set of parameters, which converge on the global
optimum faster? Once you’ve managed that, you might want to try experimenting
with other compatible selection and crossover methods, or maybe increasing the
difficult of the problem.

Performing search diagnostics with logging and visualisation

Currently integrating EvoAnalyser.py into Wallace.

Adding parallel evaluation and breeding

So far we have been running (quite intensively) the algorithm on a single
thread, but the rest of our available hyper-threads and cores are left doing
nothing. In order to maximise our CPU usage, and to maximise the performance of
our algorithm, we can use a multi-threaded configuration of our breeder and
evaluation to split their respective processes across multiple threads.

Enabling multi-threading within our algorithm is as simply as specifying the
number of threads that we wish to split the problem across in our evaluator
and breeder definitions. In both cases, the number of threads is specified by
the threads parameter, which is accepted as a keyword by the
evaluator.simple evaluator.

Try scaling up the difficulty of the problem by increasing the size of the bit
vector, then compare the performance of the single-threaded and multi-threaded
configurations of the algorithm using Julia’s @time macro, as shown below.

single = algorithm.genetic() do alg
 ...
end

multi = algorithm.genetic() do alg
 ...
end

exec_s = compose!(single)
exec_m = compose!(multi)

run!(exec_s)
run!(exec_m)

@time run!(exec_s)
@time run!(exec_m)

Note, that due to the nature of Julia’s JIT (just-in-time) compiler, the
algorithms run faster after they have been run at least once.
This difference may be smaller in the future, where each composed algorithm
is immediately pre-compiled, prior to being used by ``run!``.

You may also find that performance is slightly improved by running the above
code within a function, rather than letting the algorithms become global
variables. A few (excellent) tips on improving the performance of general
Julia code can be found at: http://docs.julialang.org/en/latest/manual/performance-tips/.

Floating Point Vectors and Numerical Optimisation

Building on the previous tutorial, in this tutorial we shall be using simple
Genetic Algorithms once again, this time to minimise a series of numerical
optimisation benchmark functions. In order to determine the minima of these
functions, we make use of the floating point vector representation, used to
represent fixed-length real-valued vectors.

Problem

	Benchmark
	Equation
	Minimum
	Search Domain

	Sphere
	[image: sphere]
	[image: min_sphere]
	[image: dom_sphere]

	Rastrigin
	[image: rastrigin]
	[image: min_rastrigin]
	[image: dom_rastrigin]

	Rosenbrock
	[image: rosenbrock]
	[image: min_rosenbrock]
	[image: dom_rosenbrock]

Skeleton

Rather than declaring our algorithm at the top-level in this tutorial, we will
instead write a function which returns a version of our algorithm, tailored to
the specifics of one of the benchmarks above. The skeleton of our function
should look something like the one given below.

function tutorial_two(size::Int, min::Float, max::Float)
 definition = algorithm.simple_ga() do
 ...
 end
 compose!(definition)
end

Where size::Int is used to specify the number of dimensions, min::Float is
used to specify the minimum value that a dimension may take (which is assumed to
be equal for all dimensions), and similarly, max::Float specifies the maximum
value that a dimension may assume.

Setup

For this problem we will be using a near-identical general setup to the one we
used in the previous tutorial, given below.

	Component
	Setting

	Population
	Simple (single deme)

	Breeder
	Simple (i.e. selection, crossover, mutation)

	Species
	Simple (single representation)

	Fitness Schema
	Scalar (float, minimisation)

	Representation
	Float vector (length tailored to function)

Fitness Schema

As the objective for each of these benchmarks is to find the global minimum
value for the function within the bounds of the search domain, our fitness
schema should minimise a floating point value, representing the value of the
function for a given set of co-ordinates.

sp.fitness = fitness.scalar() do f
 f.maximise = False
end

sp.fitness = fitness.scalar(False)

Representation

For each of these benchmark functions we will be optimising vectors of real
numbers. In order to best represent these vectors we’ll be using the
floating point vector, which will represent each of the real values as a
fixed-length floating point integer.

Making use of the arguments supplied to our algorithm building function, we can
build a problem-specific representation using the code below. Notice that the
DSL is a super-set of Julia, and can thus be used in all the ways it otherwise
would be.

sp.representation = representation.float_vector() do fv
 fv.length = size
 fv.min = min
 fv.max = max
end

Breeding Operations

As our problem is a relatively simple one, we will once again use the
breeder.simple breeder to generate the offspring for the population at each
generation. Feel free to investigate and experiment with different selection,
mutation and crossover operators, but for the rest of the tutorial we will be
using the setup given below.

pop.breeder = breeder.simple() do br
 br.selection = selection.tournament(4)
 br.crossover = crossover.two_point(0.7)
 br.mutation = mutation.gaussian(0.01, 0.0, 1.0)
end

To perform parent selection, we will be using the simple but effective method
of tournament selection once again, wherein a pre-determined number of parental
candidates are randomly selected from the population and put into a tournament
to determine the best amongst them, which becomes selected as a parent.

br.selection = selection.tournament(4)

You could also try experimenting with other methods such as
roulette wheel selection and stochastic universal sampling.

For our method of crossing over parents to produce proto-offspring, we shall be
using the two point crossover method. This method takes two vectors of equal
length, and randomly selects two points, or loci, along the genome, before
exchanging all genes between those two points across the two parents, generating
two children. For this operator, the rate property specifies the probability that
a crossover will occur during a call; if this event occurs, then the two parents
are passed to the mutation operator unaltered.

br.crossover = crossover.two_point(0.7)

Once again, there are a multitude of different crossover operators that could
be effectively applied to our given problem, and we encourage you to experiment
with as many as possible. To begin with, you could look into using one-point crossover
again, as used in the previous tutorial, or you could use uniform crossover, which
creates an offspring from two given parents on a locus-by-locus basis, randomly choosing
whose gene to include at a given locus, or you could try something different altogether.

Finally, as our mutation operator, we’re using gaussian mutation, which runs along a
genome, and with a given probability, perturbs a gene by adding noise generated from a
predefined normal distribution. Here we can alter the probability that a mutation event
will occur at a given gene, via the rate property, or we can specify the parameters of
our normal distribution using the mean and std properties.

br.mutation = mutation.gaussian(0.01, 0.0, 1.0)

Alternatively, we could use uniform mutation to sample a new floating point value
within the search domain at a given locus, or we could implement our own
noisy mutation operator, which could perturb genes using noise sampled from
alternative probability distributions, such as the Poisson or Gamma distributions.

Evaluator

Finally, with our problem representation, breeding operations, and schema
configured, we can provide the evaluator for our problem, responsible for
calculating the fitness values of potential solutions. As mentioned before, the
fitness of our individuals will be given by their function value for the
particular problem we are trying to solve.

To calculate this function value and assign it as the fitness of individuals
within the population we can make use of the same evaluator.simple
evaluator that we used in the first tutorial.

alg.evaluator = evaluator/simple()

To recap, this evaluator accepts a trailing block, which describes how the
objective function value for a given individual should be computed, and an
optional keyword argument, threads, which instructs Wallace how many threads
to split the evaluation workload across.

At this point our algorithm specification becomes specific to the particular
benchmark we’re attempting to optimise, as the objective of our evaluator
will be different for them all. Below is an example of how the Sphere
benchmark might be calculated using a Julia function.

alg.evaluator = evaluator.simple(["threads" => 4]) do scheme, genome
 f = zero(Float)
 for x in genome
 f += x*x
 end
 fitness(scheme, f)
end

As is the case with all Julia functions which accept blocks, it is also
possible to provide the name of an existing function to the evaluator
definition instead, as demonstrated below. Depending on your version of
Julia, this may result in performance gains, as standard functions are
subject to optimisation by Julia’s JIT, whereas anonymous functions
by default are not.

function sphere(scheme::ScalarFitnessScheme, g::Vector{Float})
 f = zero(Float)
 for x in g
 f += x*x
 end
 fitness(scheme, f)
end

alg.evaluator = evaluator.simple(sphere, ["threads" => 4])

Following the example above, implement similar functions for each of
the benchmark functions that are to be optimised.

Running the algorithm

After following the steps above, you should end up with an algorithm building
function that looks similar to the one given below.

CODE GOES HERE!

Starting with the Sphere problem, try running your algorithm on each of the
benchmarks using a fixed number of evaluations, and attempt to determine an
optimal set of operators and parameters common to all of them. Try modifying
the algorithm construction method to accept a different benchmark function.

Permutations and the Travelling Salesman Problem

In this tutorial, we shall use Wallace to implement a genetic algorithm to
solve the travelling salesman problem, in which we wish to find the shortest
possible route through a given set of cities, which visits all cities exactly once
and return to the city at which the tour was started. The TSP is a prime example
of an NP-hard problem, or more specifically, an NP-complete problem, that can be
effectively tackled using stochastic search techniques such as genetic algorithms or
ant colony optimisation.

By the end of this tutorial, you should be able to:

	Implement memetic algorithms via local search operators, incorporated using
the linear breeder.

	Extend Wallace with a custom evaluator, tailored to the travelling salesman
problem.

	Use Wallace to implement genetic algorithms capable of solving
permutation-based problems, such as the travelling salesman problem.

Getting Started

Before embarking on this tutorial, you should create the two Julia files described
below, each within the same directory.

	tsp.jl, which will be used to specify and run our algorithm for solving the
travelling salesman problem, and...

	my_tsp_evaluator.jl. which will be to define a new evaluator, tailored to
evaluating potential solutions to the travelling salesman problem.

Problem

Could do with a short description of the problem being solved in this tutorial,
perhaps along with a diagram of the Berlin-52 map, and links to the .tsp file.

Setup

For this problem, we shall be using a standard genetic algorithm, as in both
the previous tutorials, with the components listed below:

	Component
	Setting

	Population
	Simple (single deme)

	Species
	Simple (single representation)

	Representation
	Permutation

	Breeder
	Linear Breeder

Permutation Representation

As in the previous tutorial, we will once again be using the simple species to
describe our simple population. In this case, we will be using a permutation
representation to represent our potential solutions; each tour is represented
as an itinerary, where the cities are listed in the order in which they are
visited, except for the return trip to the starting city, which is left out as
that part of the journey is implicit.

Instances of the permutation representation are specified by providing an
alphabet of values which they should permute; this alphabet may contain any
type of item, from strings, to integers, to arbitary objects. One may provide
a alphabet to the specification either by explicitly stating it within a list,
by providing a numeric range, or by providing an external alphabet file.

If one were to take the explicit approach to representing the alphabet for the
given problem, then the specification would look something like the one given
below:

sp.representation = representation.permutation([
 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
 51,52
])

Clearly this approach is rather tedious and error-prone for our purposes,
especially if we were to use our algorithm to solve other instances of the TSP.

Alternatively, we could store our alphabet in an external line-delimited file,
and instead provide the alphabet property with the path to that file.

sp.representation = representation.permutation("my_tsp_cities.txt")

However, exhaustively listing the indices of each of the cities in our problem,
whether inline or through an external alphabet file, is probably still a bit too
monotonous for our liking.

Fortunately, we can list the indices for each our cities more succinctly through
the use of numeric ranges within Julia, as demonstrated below.

sp.representation = representation.permutation(1:52)

Linear Breeder

The linear breeder is the second simplest breeder provided by Wallace; it
relaxes the constraints imposed on the type and number of genetic operators
imposed by the simple breeder, allowing the user to provide an arbitrary linear
chain of operators instead. Offspring are produced by being subjecting batches of
proto-offspring to each of these operators in sequence, until the desired number
the required number have been produced as directed.

To specify a linear breeder, one needs only to provide its definition with an
ordered list of operators, and if necessary, the associated stage of individual
development upon which they operate, as demonstrated below:

Using this style,
pop.breeder = breeder.linear([
 selection.tournament("genome", 4),
 crossover.pmx("genome")
 mutation.two_opt("genome")
])

... or this style.
pop.breeder = breeder.linear() do br
 br.ops << selection.tournament() do sel
 sel.size = 4
 sel.stage = "genome"
 end
 br.ops << crossover.pmx("genome")
 br.ops << mutation.two_opt("genome")
end

However, since we’re using a simple species, which has only a single stage of
development, there is no need for us to provide the stage property for each
operator specification. In the event we omitted the stage property and our
species had more than a single stage of development, then the stage would
default to the canonical genotype.

pop.breeder = breeder.linear([
 selection.tournament(4),
 crossover.pmx()
 mutation.two_opt()
])

Writing a Custom Evaluator

In this part of the tutorial, we shall implement a specialised evaluator capable
of efficiently determining the quality of potential solutions for the travelling
salesman problem.

Type Definition

In order to implement our specialised TSP evaluator, we must first extend Wallace
with a new Julia type for that evaluator. To do this, we will need to open up the
skeleton file we constructed earlier, my_tsp_evaluator.jl.
Within this file we will write a standard Julia definition for a type that accepts
details of a given TSP problem and evaluates provided candidate solutions
according to them.

To create a new type within Julia, we simply write the keyword type followed
by the name of our type. The definition of our type then immediately follows this
line, and is terminated by the end keyword. However, as we’re writing a special
type of evaluator, we will need to extend the base evaluator type; this is
done by following the syntax below.

type MyTSPEvaluator <: Evaluator

end

As our evaluator builds upon the existing functionality of Wallace, we must
add importall Wallace to the top of our file, as shown below.

importall Wallace

type MyTSPEvaluator <: Evaluator

Next, we shall define the attributes of our TSP evaluator type within the type
definition block we have just created. This is done by simply providing the name
of the attribute followed by two colons and the name of its underlying type within
Julia. An example attribute, responsible for recording the number of cities within
a given TSP instance is shown below.

type MyTSPEvaluator <: Evaluator
 cities::Int
end

For our particular evaluator, we shall add two further attributes to its
definition; namely, threads, specifying the number of threads that the
evaluation workload should be split across, and distance, modelling the
distance matrix between nodes.

To model the distance matrix, we shall make use of Julia’s multi-dimensional
arrays, using an efficient two-dimensional array to store the distance between
nodes. The complete definition for this type is given below:

type MyTSPEvaluator <: Evaluator
 cities::Int
 threads::Int
 distance::Array{Int, 2}
end

evaluate! method

With our type definition in place, we now need to implement the evaluate!
method of our type, responsible for accepting a chromosome, along with the
state of the search, and returning a valid fitness object. The evaluate!
method should accept the following arguments:

	e::MyTSPEvaluator - The evaluator object itself must be provided as part

of the call. From this object we will extract the distance matrix to perform
the tour length calculations.
* s::State - The current state of the evolution. We won’t be using this,
but as it forms a necessary part of the evaluate! method signature, we shall
still include it.
* sch::FitnessScheme - The fitness scheme used by the provided individual.
We will use this to produce a fitness object from its tour length using the
fitness() method.
* tour::Vector{Int} - The tour under evaluation.

Once we’ve added these method arguments together, our empty method should
start to look something like the example below.

function evaluate!(e::MyTSPEvaluator, s::State, sch::FitnessScheme, tour::Vector{Int})

end

Ultimately, our method should return a computed fitness object for its provided
individual. In order to do this, we will call the fitness method, together with
the fitness schema and the individual’s tour length as its arguments, as shown
below.

function evaluate!(e::MyTSPEvaluator, s::State, sch::FitnessScheme, tour::Vector{Int})
 # tour length calculation...

 fitness(sch, length)
end

Now the last thing that remains is to add the tour length calculation logic
into the top of our method body. First, let’s create a temporary variable to
store the total length of the individual’s tour so far. Let’s simply call this
length. Without a little knowledge about the inner workings of Julia, you may
be tempted to simply perform this operation via length = 0. But that would be
a near-silent mistake, resulting in a slower performance and some strange artefacts.

Why? Because setting the length to 0 will mark the length variable as an
integer, and any subsequent operations will either proceed to convert the
integer to a floating point, or they will simply treat inputs as integers.

The simplest way to get round this is to initialise a floating point zero via
0.0, but a safer, better practice, is to initialise the count using the
zero function with the name of the underlying type, as shown below.

function evaluate!(e::MyTSPEvaluator, s::State, sch::FitnessScheme, tour::Vector{Int})
 length = zero(Float)

 fitness(sch, length)
end

We now need to actually perform the tour length calculation. The fastest and
simplest way to do this is to simply iterate across the indices of each of the
cities, from 1 to the number of cities minus one, intentionally missing the
last index. At each step, we then increment the tour length by the distance
between the city at the current index and the city at the subsequent index
using the distance matrix. Finally, we add the distance between the city at
the final index and the starting index to complete the tour.

We should now have a complete type definition for our evaluator that looks
something like the one below.

importall Wallace

type MyTSPEvaluator <: Evaluator
 cities::Int
 threads::Int
 distance::Array{Int, 2}
end

function evaluate!(e::MyTSPEvaluator, s::State, sch::FitnessScheme, tour::Vector{Int})
 length = zero(Float)
 for i in 1:e.cities-1
 length += e.distance[tour[i], tour[i+1]]
 end
 length += e.distance[tour[end], tour[1]]
 fitness(sch, length)
end

Definition

Now that our type definition and evaluate! method are in place, we now need
to provide a definition function and a composer for our evaluator. Our
definition function, which we shall call my_tsp_evaluator, will simply take
a block, specifying the setup for a TSP evaluator, and return a definition of
that evaluator, rather than an instance of MyTSPEvaluator.

In order to return such a definition, we must first define one, by adding a
new sub-type of the EvaluatorDefinition type, as shown below:

importall Wallace

type MyTSPEvaluator <: Evaluator
 ...
end

type MyTSPEvaluatorDefinition <: EvaluatorDefinition

end

...

The role of this definition type is to hold information about our evaluator
which will later be transformed into an instance of MyTSPEvaluator by the
compose! function.

With our definition type now in place, we can create our definition function,
as shown below:

"""
Create a definition function which accepts a block, and returns a
MyTSPEvaluatorDefinition function.
"""
function my_tsp_evaluator(blk::Function)
 def = MyTSPEvaluatorDefinition()
 blk(def)
 def
end

This will pass an empty MyTSPEvaluatorDefinition instance to our block,
from which we can specify the properties of that instance.

To our evaluator definition type, we shall add three such properties:

	file::AbstractString, the name of the TSP file from which the cities
should be acquired.

	threads::Int, the number of threads that the evaluation should be split
across. This should be initialised to 1.

	stage::AbstractString, an optional parameter, specifying the name of the
developmental stage that this evaluator should extract the tour from. This
should be initialised to an empty string.

We should also add an empty constructor, so that a partial definition can be
instantiated without specifying each of these properties apriori. Our
definition type should now look something like:

type MyTSPEvaluatorDefinition <: EvaluatorDefinition
 file::AbstractString
 threads::Int
 stage::AbstractString

 MyTSPEvaluatorDefinition() = new("", 1, "")
end

Composer

The last remaining task in constructing our evaluator is to implement its
composer, or builder, as a method of the compose! function. Our compose!
function should accept a definition, provided in the form of an
MyTSPEvaluatorDefinition instance, as well as a Population instance.
Using these arguments, the method should return a well-formed
MyTSPEvaluator instance, ready to be integrated into the algorithm under
composition.

The skeleton for our function should look something like that given below.

function compose!(def::MyTSPEvaluatorDefinition, pop::Population)

end

For our evaluator, the composer will need to take the path to a file containing
the co-ordinates of a set of cities, and to load and transform the contents of
that file into a distance matrix.

In order to generate a distance matrix within the composer, we first need to
load the contents of the cities file and convert it into an array of co-ordinates.
The easiest way to do this is to first create an empty list to hold the
co-ordinate lists for each city, and to then scan each line in the TSP file,
convert it into a list of co-ordinates, and insert it into the array. A way of
performing the above in Julia is given below.

Create a list to hold the co-ordinates of each city.
cities = Vector{Float}[]

Open up a handle on the TSP city file with read permissions.
f = open(def.file, "r")

Iterate across each line in the file, and provided it isn't empty,
produce a list of co-ordinates from it and append them to the
city co-ordinates list.
for l in readlines(f)
 !isempty(l) && push!(cities, [float(n) for n in split(l, ",")])
end

Close the file handle.
close(f)

Now we have a way of computing the list of co-ordinates for each city,
let’s go about calculating the distance matrix. As we did before, in
our type definition, we shall use a two-dimensional array to
implement our distance matrix. A simple way to compute this matrix is
given below:

n = length(cities)
matrix = Array(Float, 2)
for i = 1:n
 for j = 1:n
 matrix[i, j] = sqrt(sum((cities[i] - cities[j]) .^ 2))
 end
end

We now have everything in place to build an instance of our TSP
evaluator type, and to complete our composer. We simply need to pass
the number of cities, the number of threads, and the distance matrix
to the TSP evaluator constructor (in the order in which they appear
in the MyTSPEvaluator type definition).

function compose!(def::MyTSPEvaluatorDefinition, pop::Population)

 # Create a list to hold the co-ordinates of each city.
 cities = Vector{Float}[]

 # Open up a handle on the TSP city file with read permissions.
 f = open(def.file, "r")

 # Iterate across each line in the file, and provided it isn't empty,
 # produce a list of co-ordinates from it and append them to the
 # city co-ordinates list.
 for l in readlines(f)
 !isempty(l) && push!(cities, [float(n) for n in split(l, ",")])
 end

 # Close the file handle.
 close(f)

 # Compute the distance matrix.
 n = length(cities)
 matrix = Array(Float, 2)
 for i = 1:n
 for j = 1:n
 matrix[i, j] = sqrt(sum((cities[i] - cities[j]) .^ 2))
 end
 end

 # Construct and return a MyTSPEvaluator instance.
 MyTSPEvaluator(n, def.threads, matrix)

end

Running the algorithm

With our evaluator definition now complete, we can use it within our algorithm
specification by loading the definition file within our specification file, via
using my_tsp_evaluator. We can then use the evaluator property of our
algorithm to specify its TSP evaluator.

After having followed all the preceding steps, you should have an algorithm
which looks roughly similar to the one given below.

CODE!

Koza Tree Genetic Programming and Symbolic Regression

 Copyright 2015, Christopher Steven Timperley.

 Navigation

 	
 index

 	Wallace

Index

 Copyright 2015, Christopher Steven Timperley.

 _static/comment-close.png

_images/individual_traditional.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_images/population.png
nnnnnn

_images/individual_new.png
(-
j\—

[reness) [seswion | cosons ' Der\vaﬁon) e)

search.html

 Navigation

 		
 index

 		Wallace »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Christopher Steven Timperley.

_static/plus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_themes/README.html

 Navigation

 		
 index

 		Wallace »

krTheme Sphinx Style

This repository contains sphinx styles Kenneth Reitz uses in most of
his projects. It is a drivative of Mitsuhiko’s themes for Flask and Flask related
projects. To use this style in your Sphinx documentation, follow
this guide:

		put this folder as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there.

		add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'kr'

The following themes exist:

		kr

		the standard flask documentation theme for large projects

		kr_small

		small one-page theme. Intended to be used by very small addon libraries.

 © Copyright 2015, Christopher Steven Timperley.

